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The Projection Method for Computing
Multidimensional Absolutely Continuous
Invariant Measures
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We present an algorithm for numerically computing an absolutely continuous
invariant measure associated with a piecewise C? expanding mapping S: 2 — Q
on a bounded region 2 = R¥. The method is based on the Galerkin projection
principle for solving an operator equation in a Banach space. With the help of
the modern notion of functions of bounded variation in multidimension, we
prove the convergence of the algorithm.
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1. INTRODUCTION

In physical science, many problems are closely related to that of the
existence and computation of invariant measures for nonsingular trans-
formations on measure spaces.!'> For one-dimensional piecewise C? and
stretching mappings of an interval, the existence of an invariant measure
which is absolutely continuous with respect to the Lebesgue measure has
been proved by Lasota and Yorke."'®

For the computation of one-dimensional absolutely continuous
invariant measures, Li''” proved the convergence of Ulam’'s piecewise
constant approximation method for the Lasota-Yorke class of piecewise
C? stretching mappings on [0, 1]. Some high-order methods have been
developed.'®"!'¥ A unified approach was proposed in ref. 4. Error estimates
of these methods were given in refs. 2, 4, and 12. Furthermore, motivated

! Department of Mathematics, University of Southern Mississippi, Hattiesburg, Mississippi
39406-5045. i
2 Institute of Systems Science, Academia Sinica, Beijing 100080, China.

899

0022-4715/94/1100-0899$07.00/0 & 1994 Plenum Publishing Corporation



900 Ding and Zhou

by the convergence rate analysis, a systematic spectral analysis of
Frobenius-Perron operators was presented in ref. 5.

For piecewise C? and expanding mappings in R”, a general existence
theorem was obtained in ref. 11. The theorem states that under mild condi-
tions on the partition of the region < R”, there exists an absolutely
continuous invariant measure for S: Q2 — Q if the derivative of the inverse
mapping S, '(x) of each piece S; of S has norm less than some & such that
a=0(l+1/a) <1 for some a>0 at every point x in its domain.

Recently the convergence of Ulam’s method was proved for the
Jablonski class of mappings on an N-dimensional cube.!!’ For general high-
dimensional piecewise expanding transformations that satisfy the condi-
tions in ref. I1, a continuous piecewise linear Markov finite approximation
method was developed® to compute absolutely continuous invariant
measures, and its convergence was established with the help of the modern
notion of bounded variation. In this paper, we introduce a general high-
order projection method. Compared with the Markov finite approximation
method, our new algorithm employs piecewise polynomials which are not
necessarily continuous to approximate the density of the invariant measure,
which is in general only an L'-function.

After giving some preliminaries in the next section, we present the
first-order projection method in detail in Section 3. The outline of the
second-order method is given in Section 4, and we conclude in Section 5.

2. FROBENIUS-PERRON OPERATORS AND THE
PROJECTION METHOD

Let Q be a bounded region in R" with piecewise C? boundary.
Throughout the paper we assume that S: Q — Q is a piecewise C? expanding
mapping, i.e., there is a constant 0 <o <1 and a partition {Q,,.., 2,} of Q
such that for i=1,.., 1, Q, has a piecewise C* boundary, and the restriction
S;=S|,, of S on 2,is a C? mapping which can be extended to the closure
of 2, as a C? mapping satisfying | DS;'|| <o, where DS;' is the derivative
matrix of S;' and |-|| is the Euclidean matrix norm. S need not be
continuous at a point on the boundary of Q,. It was shown in ref. 11 that
under the above assumptions, if a =o(1 + 1/a) < 1 for some constant a >0,
then there exists an absolutely continuous invariant measure under S.

The operator Pg: L'(Q2)— L'(£2) defined by

LPsfdm=L fdm (1)

“HA)

for every measurable subset 4 of £ is called the Frobenius-Perron
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operator associated with S, where m is the Lebesgue measure on £. It is
well known!'® that for f=0 and ||f]| =1, the absolutely continuous
measure

uld)y= L fdm VY measurable sets 4 = Q2

is invariant under S if and only if f is a fixed point of Pg, e, Pgf=/.
Here the invariance of the measure x (under S) means that u(S~'(4)) =
u{A) for every measurable set 4 = Q.

Some basic properties Pg are listed below without proof. For more
detailed discussion of Pg, see the monograph of Lasota and Mackey [15].

Proposition 2.1. (i) P is a positive operator that preserves the
L'-norm of nonnegative functions. Thus Pg is a Markov operator.

(iiy [oPsfdm={, fdmfor feL'(Q).

(iii) Let >0 be an integer. Then Pg =(Pg)".

(iv) If Pgf=f, then Psf*=f* and Pgf~ =f", where
St =max{f, 0} and f~ =max{ —f, 0}.

Now we give a brief introduction to the Galerkin projection principle
for solving an operator equation in a Banach space. Let E be a Banach
space. Suppose M and N are closed subspaces of E such that E= M@ N.
We can define the projection Q: E— E of E onto M along N as follows:

Ox=y if x=y+z, yeM, zeN

Now, let E and F be two Banach spaces and let 7: E— F be a
bounded linear operator. We want to solve the operator equation

Tx=y

where y e F is fixed. The Galerkin projection method proceeds as follows.
Choose two sequences of finite-dimensional subspaces E, and F, of E and
F, respectively. Let Q, be a sequence of projections from F onto F,. In E,
we look for x, such that

Qn Txu = Qn Yy

Under a basis of E, and a basis of F,, the above equation is basically a
system of algebraic equations. Thus, we can use numerical linear algebra to
find approximate solutions to the original problem.

Before ending the section, we introduce the concept of functions of
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bounded variation in high dimensions that is essential in the convergence
proof of our method. In what follows, || fll=Ifllo,={q|f|dm is the
L'-norm of fe L'(2), and | gllo. . =ess sup{|g(x)|: xe 2} is the L=-norm
of ge L=(Q). The following definition is given in ref. 10.

Definition 2.1. Let Q< R" be an open set and let fe L'(Q). The
number

V(S Q) EL \Df || dm = sup {jﬂfdiv gdm: ge CY2 RY), lglo w < 1}

is called the variation of f over Q, where div g=3>V , dg,/0x; and
C.(£2; RY) denotes the space of continuously differentiable mappings from
Q into R” having compact support. If V(f: Q) < co, then f'is said to have
bounded variation in Q. We let BV(Q) be the Banach space of all functions

in L'(2) with bounded variation under the norm | f| g, = | f] + V(f; 2).

3. THE PIECEWISE LINEAR PROJECTION METHOD

In this section we look for approximate solutions of the
Frobenius-Perron operator equations P¢f = fin spaces of piecewise linear
functions, using the projection technique. This numerical scheme is a
generalization of the idea introduced in ref. 7 to the multidimensional case.
For simplicity of presentation, we assume that Q is the unit square
[0, 1]%€ R However, the basic idea behind our approximation method
can be easily extended for general region Q c R”.

Let n>0 be an integer, and let h=1/n and x,=y,=ih/n for
i=0,1,.,n. Divide £ into n?> equal subsquares Qu=I,xI;=
[xi—, x; %[y, ;] for i, j=1,.., n. Thus we have a uniform rectangle
partition T, of Q.

Let 4, be the space of piecewise linear functions corresponding to the
above partition. Then 4, is a 3n%-dimensional linear subspace of L'(Q).
Note that 4, < L=(£2). Let y, be the characteristic function of 4. Then

Xy z(x“xi—l)XQ,-, 2(}’—}’j—|)XQ,, ) )
{h—z, E ) e vi=1,.,nj=1,., n}

is a basis of 4. Let it be ordered as {¢,};_, with /=3n? in a natural way.
It is obvious that each ¢, is a density, i.e., ¢, >0 and |¢,|| =1, with some
£2;; as its support.

Define Q,: L'(2) — 4, by

<f—Qh./; g>=0’ VgEAh
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where { f, g> =jgfg dmfor fe L' (Q)and ge L*(Q). Thenlim, o, Q,f=f
for all feL'(Q) and ||Q,| is uniformly bounded. Let P,=Q,0 Pg; then
P,: L'(R)— 4, satisfies

j P,,fdm=j fdm, YfeL(Q)
2 (2]

Now we show that P, has a nonzero fixed point in 4,,.
Let the /x/ matrices G and M be defined as

G=(gu) gu=<Puors90;>, VI<j k<l
and
M=(my), my =< Py, ;> Vi<j k<l
Then, by the definition of Q, and P,, we have:
Lemma 3.1. P, has a fixed point f, =3} _, &,@ €4, if and only if
GE= M¢ for some &=(&,,.., )T eR.

Lemma 3.2. There exists a nonzero f, € 4, such that P, f, = f,.

Proof. Since the constant function 1 € 4,, there exists a (nonnegative)
vector a=(a,,.., ;)7 € R' such that

!

Z apr=1
k=1
Now let b= G7a— M7a. Then the kth component of b is given by

{ 1
bk= Z <Ph¢ka ¢j> aj_ Z <(pk’ ¢1> aj

j=1 Jj=1

1 !
=<Ph(/7k’ > ”j¢j>_<(/’k’ ) "j‘/’1>

j=1 j=1

={Pypi, 1> — @y, 1>=anly¢kdm_JQ¢kdm=0

Since the transpose of G — M has a nontrivial kernel, the same is true for
G — M. Hence, there exists a nonzero & e R such that G¢ = M¢. QED

To obtain the convergence of the projection method, we need the
following result (see, e.g., ref. 3).
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Lemma 3.3. There exists a constant C that is independent of the
partition T, such that

10,/ ~/I<Ch| lgrad Sl dm W' (2) @)

Now for the piecewise C? and expanding S: 2 — €, it was proved in
ref. 11 that there are two constants a and g such that for any fe BV(Q),

VPsf, Q) <aV(f,2)+ B S (3)

Lemma 3.4, There ia a number 1 independent of .S and 4 such that
if $:Q — Q is piecewise C? and expanding such that lx <1, then for any
sequence of fixed points { f;,} of P, with | f,|l =1, the sequence { V(f,; 2)}
is uniformly bounded.

Proof. First of all, we show that there exists a constant A that is
independent of / such that

Q. Q)<AV(f,Q),  YfeBV(Q) (4)

Let fe BV(£2). By Theorem 1.17 in ref. 10, there exists a sequence {f;} in
C*=(£2) such that

lim 1~ /1=0 (5)
and
Jim [ Igrad /| dm =71/, Q) (6)

Since || Q,ll is uniformly bounded, (5) implies that lim;_ . 1Q, f;— Q, |l
=0. Hence, from Theorem 1.9 of ref. 10,

V(Q, f; Q) <liminf V(Q, f;; Q) (7)
j o

Define W, < Cy(22; R?) by

W,={ge Co(2 R?): 8lo;€023% Q1,4 j=1,., n}
where  Q, =span{x’y/:0<i<p,0<j<q}. Then there exist

n,: Cy(£2; R?) > W, and a constant C’ that is independent of the partition
T, of Q such that (cf. ref. 9, pp. 104-111, 154-155)

J, divg—mig) fam=0, Vfea, ®)
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and
"nhgl|0.ao<CI ”g”O.ocr! ngC(l)(Q, RZ) (9)

Now from (8), we have

[ Q, f;div gdm=—'[ gradfjn,,gdm-kj' (Qufi— ) dive, gdm
Q 0 2

Thus, from (2), (9), and the inverse estimate'®’ that there is a constant C
such that

”le nthO,oo < Ch_l ||7Thg||o,x»

we can find a constant A that is independent of # and f e BV(£2) such that

[, 0ufjdiv dm| <] erad 1 m gl
2 22

which implies that
V(Q4 ;3 2) = sup “ﬂ Qi /;div g: g€ Co(Q; R?), [1gllo.c < 1}
<A [ ligrad £;) dm (10)
Q

Combining (6), (7), and (10), we obtain the conclusion.
Finally, combining (3) and (4), we have

Vfi; Q)= V(P fi; Q)< AV(Ps f3; Q)< AaV(fy; @)+ 2B

Since Aa < 1, we obtain
AB
1 —Ax

(/i Q)<

Thus, {¥(f,; 2)} is uniformly bounded. QED

Now we can prove the convergence result of the projection method.

Theorem 3.1. Suppose S: Q2 —  is piecewise C? and expanding
such that Aa < 1. Let {f,} €4, be such that P, f,=f, and ||f,] =1. Then
there exists a subsequence {f,,} = {f,} such that f, converges to a fixed
point of P. If in addition Pg has a unique invariant density f, then we can
choose f,, such that lim, _ o f, = f- Moreover, if only « < 1, then a sequence
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of functions can be constructed from piecewise linear functions which
converge to a fixed point of Pg.

Proof. Suppose first la < 1. Then by Lemma 3.4, the sequence {f,}
is bounded in BV(2). Theorem 1.19 of ref. 10 implies that there is a
subsequence {f,,} = {f,} which converges to some g in L'(£2). Since

”PSg_g” < ”g_.fhk“ + ”.fhk_QhkoPS./hk”
+ “QhkOPS.fhk_QhkOPSg” + ”QhkOPSg_PSg“

noting that Q, o Psf; =f,, and [|Q, o Pl is uniformly bounded, we see
that P;g=g. Obviously || g|l=1.

If P has a unique fixed density, then (iv) of Proposition 2.1 implies
that g=f or g= —f The above argument shows that any convergent
subsequence of {f,} must converge to either f or —f. Hence, we have
lim, _, f, = f if we put an appropriate sign to each f,,.

Now suppose « < 1. Since in (3), « for S becomes «” for S” because of
(iii} of Proposition 2.1, one can find an r >0 such that for w = S" instead
of S, the condition of Lemma 3.4 is satisfied. Let £/’ of unit length be a
fixed point of P,(w) in 4,. Define

r—1

1 _
gk=; z (Ps)/fﬁf:)
j=0
where f,, is a convergent subsequence of {f,} from the proof of the first
part of the theorem. Then g, converges to

r—1

1 .
g== 2 (Ps)/f*
r 5
where f*“) is a fixed point of P,,. This g is a fixed point of P. In fact, from
(iii) of Proposition 2.1,

1
Psg=;{Psf(w)+ +(Ps)rf(w)}=g QED

4. THE PIECEWISE QUADRATIC PROJECTION
METHOD

Based on the discussion in the previous section, we outline the
piecewise quadratic polynomial projection method in this section. Let
QcR? be the unit square and T,={Q,:i j=1,.,n} the rectangle
partition of 2 with mesh 4 as in Section 3.

Let 2, be the space of piecewise quadratic functions corresponding to
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the above partition. Then Q, is a 6n>-dimensional linear subspace of
LY(2)n L=(R). A basis of Q, is given by

{XQ,, Ax—x;_)Xa;, 2y —y;-1) X, 3(x—x,_ )2 Xy

h2 > h3 ’ h3 h4 ’
dx—x;  Ny—y,21) Xa,
h* ’
3y=yi-)Xa,

W i=1,.., n;j=1,...,n}
Let it be ordered as {¢,};_, with /=6n> in a natural way.
Now let @,: L'(2) — 2, be defined by

f—0./.8>=0, VgeQ,

Let P,=Q,Ps. Then we can show as before that there exists a
number A independent of S and 4. Moreover, we have:

Lemma 4.1. There exists f, € 2, such that P, f,=f, and | f,i=1.
Moreover, if Ja < 1, then the sequence { V(f,; Q)} is uniformly bounded.

Now we state the convergence theorem for the second-order method.

Theorem 4.1. Suppose S: 2 — Q is piecewise C? and expanding
such that Aa < 1. Let {f,} € 2, be such that P, f, =/, and || f,] =1. Then
there exists a subsequence {fj,} = {f,} such that f, converges to a fixed
point of Pg. If in addition P has a unique invariant density f, then
essentially lim, _, f;, = f. Furthermore, if only a <1, then a sequence of
functions can be constructed from piecewise quadratic functions which
converges to a fixed point of Pg.

5. CONCLUSIONS

In this paper, we presented the piecewise linear and piecewise
quadratic polynomial projection methods to numerically solve the fixed-
point problem of the Frobenius-Perron operator Pg associated with a
high-dimensional nonsingular transformation S. For piecewise C? and
expanding mappings S for which the existence of absolutely continuous
invariant measures is guaranteed, we proved the convergence of the
method, using the concept of bounded variation for functions of multi-
variables.

We only described the method for the unit square in plane for the sake
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of simplicity of presentation. The idea of the method can be easily extended
to a general region of high dimension. Moreover, the convergence result
can be established in the same way.

Since in general the fixed density of Pg is only an L'-function, the
projection method using noncontinuous finite elements seems a more
natural approach than the Markov approximation method with
continuous finite elements used in ref. 8. On the other hand, for the
Markov approximation method, the approximate fixed points f), are
guaranteed to be nonnegative, but it is not known whether this property is
true for the projection method.
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